NEW TECHNOLOGIES TO ACCELERATE COST EFFECTIVE GRID MODERNIZATION

DUM NOVEMBER 1, 2018

GLOBAL CHALLENGE- CONGESTED CITIES

Occupy less than 4% of land

House 54% of World's population

Use 75% of available resources

Account for 70% of green house gas emission

Accounts for 80% of Global GDP

In India also, Urban Population would almost double to 814 million by 2050

Rapid Expansion of Indian Grid

Grid in 1980s

Grid in 21st Century

What is Smart Grid ?

Smart Grid

"Smart Grid is integration of Information and Communication technologies with power infrastructure to induce intelligence aiming at enhanced efficiency, reliability, asset utilization and consumer experience"

Need for Smart Grids !!

Depletion of Fossil Fuel

Climate Change

Erratic nature of Renewable

Huge load variations

High AT&C Losses

Increased stress on reliability

Large interconnected networks

Commercial value of interruptions

Stringent Regulations

Consumer Aspirations

In the background of such challenges and tremendous development in communication and computation technologies in last two decades have brought in huge space for Smart Grids

Becoming smarter is a long-term process and a step-by-step approach

Span of Smart Grids

Generation

- Generation from renewables
- Flexibility
- Balancing Reserves
- **REMCs**

Transmission

- Renewable Integration
- Energy Storage
- WAMS
- Dynamic Compensation
- FACTS
- Digital Substations

Distribution

- AMI
- OMS
- PLM
- SCADA & Automation
- Distributed Generation
- Microgrids

Renewable Forecasting, Automation, Remote Monitoring & Control

Global Renewable Scenario

Glimpse of Indian Power System

Issues in Handling Large Volume of RE

NET LOAD PLOT 2021-22 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 HOURS → ■DEMAND ■NET LOAD ■SOLAR	Balancing	 Peak doesn't match with load Huge uncertainties Limited flexibilities in conventional generators
4 7 10 13 16 19 22 A 8 - Duck Curve	Ramping	 Present ramp rate: 200 MW/ Min (Evening), 140 MW/Min (Morning) With heavier belly and longer neck, large ramp rates would be required Lack of mechanisms for grid ramping services
Magazaa	Var Management	 Long lines for evacuation Large variation in line loading Inverters sensitive to voltage variation
Composite Total Solar Irradiance	Scheduling &	Quick variations in small time windows

Forecasting

Dail

30–Ďay Running Mean 365–Day Running Mean

- Large forecasting error during rainy season
- Practically non-dispatchable

Generation: Renewable Penetration in India

....Catalyst for change

Establishment of REMCs

- 11 nos. REMCs to be established at State, Regional & National level co-located with respective Load dispatch centers
 - States LDCs (7), Regional LDCs (3) & NLDC (1)

Transmission

PMU Placement

All 400kV and above substation in State and Central grids & IPPs

Generating stations at 220 kV level and above

HVDC terminals and important Inter-Regional and Inter-National tie lines

Both ends of all 400kV and above Transmission lines of State, ISTS grids and IPPs

Higher Resolution for Greater Observability

HH:MM:SS

Much Higher Resolution (typically 25-50 samples/second) Compared to 4 to 10 seconds /sample of SCADA

SCADA to PMU: X-RAY to MRI

Integration of PMU data

Analytics using PMU data

Line Parameter Estimation

Online vulnerability analysis of distance relays

Linear State Estimator

Supervised Zone-3 distance protection scheme to prevent unwanted tripping

CT/CVT Calibration

Control Schemes for improving system security (Based on angular, voltage & frequency stability)

Green Energy Corridors : Components

- Intra & Inter State Transmission strengthening : For integration of Renewable energy sources with the grid
- Dynamic compensation (SVC & STATCOM): To maintain grid parameters
- Renewable Energy Management Centres (REMC) : For RE forecasting, Scheduling & real time monitoring

GEC Status- Under Implementation

Dynamic Compensation

- Facilitating Renewable Integration
 - **Maintaining Grid Parameters**

14 No. of Hybrid STATCOMs

(Typical size <u>+</u>300 MVAR+ 1x125 MVAR MSC + 125 MCR)

- 1 no. existing at NP Kunta
- **4 No. of SVCs** (Typical size +600/-400 MVAR) 3 nos. existing

Green Energy Corridors-II (Solar Parks)

Locations of Ultra Mega Solar parks

* <u>5 States</u> •Andhra Pradesh Rajasthan Gujarat •Madhya Pradesh Karnataka **Evacuation System for Solar Parks**

 $\sqrt{34}$ Solar Parks in 21 states (20 GW)

√Evacuation System for Solar Parks of over 20,000 MW under Implementation

✓POWERGRID assigned to implement evacuation system for 8 Solar Parks in 5 States (*) (Estimated cost Rs 4300 Cr)

 ✓N.P Kunta (1500MW) Solar Park in District Anantpur, Andhra Pradesh, Ph-I commissioned

 \checkmark Transmission system for other solar parks being implemented

Distribution: Smart Grid

Advanced Metering Infrastructure

• Billing Efficiency

Meter Data Management System

Customer Details

Policy # 07-35-04-306A Name Mr. Murugan.C Address No.17,Middle Street,New Saram,Puducherry-605013 AMI Status

Peak Load Management

Power Quality Management

Key benefits of PQM are:

- Reduction in Technical Losses
- Increase in Life of the equipment
- Optimal utilization of the infrastructure
- Improvement in Power Quality

Distributed Generation: Net-Metering

"Net Metering: Records the net consumption over a billing cycle (Import Energy – Export Energy)"

Micro Grid

Remote area electrification through renewables Deferment of investments in bulk transmission and distribution network

Improves energy efficiency Reduction of energy losses in the network

Supports the central grid like a controllable load

Improves reliability

Saves from the mass outage or black out

Puducherry Smart Grid Pilot Project

Smart Grid Pilot Project implemented by POWERGRID jointly with PED and in collaboration with other organizations

Attributes Implemented:

- ✓ Advanced Metering Infrastructure (AMI)
- Peak Load Management (PLM) including Demand Side Management, Demand Response
- ✓ Outage Management System (OMS)
- ✓ Renewable Energy integration with net metering
- ✓ Power Quality Management (PQM)
- ✓ Micro grid
- ✓ Energy Storage & Electric Vehicle with solar charging station
- ✓ Street Light Automation

Snapshot of Installations-AMI, OMS, SGCC

Snapshot of Installations-PQM, Integration of RE, Electric Vehicle

POWERGRID's Pilot Project for Battery Energy Storage System

Controllers for Battery Energy Storage

Energy Time Shifting

Frequency Regulation

RE Firming

Load Following

Voltage Support

Peak Shaving

Smart Grid Knowledge Centre

Smart Grid Consultancy being provided by POWERGRID

S. No.	Area	Utility	Attributes
1	Kala Amb, Himachal Pradesh	HPSEBL	AMI, PLM, OMS (RF & GPRS)
2	Agartala, Tripura	TSECL	AMI, PLM (PLC)
3	Siliguri, West Bengal	WBSEDCL	AMI, PLM (RF)
4	Mysore, Karnataka	CESC	AMI, PLM, SCADA, OMS, Agri DSM (RF)
5	Panipat, Haryana	UHBVN	Communication System for AMI (RF, GPRS, PLC)
6	Gurgaon, Haryana	DHBVN	Distribution Infra
7	Naroda, Gujarat	UGVCL	AMI, PLM (RF)
8	Puducherry	PED	AMI, PLM (RF)

Synchro-phasor Technology

- With Phasor technology and Phasor Measurements Units (PMU), we have:
 - Power System measured states (VIf & Angle) and not estimates
 Dynamic system conditions via High Resolution Data (25 50 samples/sec)
 - -Ability to compare regions due to Time Synchronized data
- Technology provides high resolution, time synchronized data, useful for calculation and monitoring, e.g.:
 - -% damping (inter-area and local area oscillations)
 - –Measured sensitivities, such as $\Delta V / \Delta P$, $\Delta \delta / \Delta P$
 - -Angle Difference
 - -Transmission capability

Other Smart Grid Functionalities

Hybrid Network Development

 Comprehensive EHVAC & HVDC System for flexible operation & grid stability

Dynamic Compensation

Installation of SVC, STATCOM

Digital Substation & Substation Automation

- Improved Reliability, Reduction in O&M Cost & Fast Restoration
- Substation Automation

Remote Operation & Monitoring

- Leading to virtual manning of substations
- Better Coordinated Operation

Other Smart Grid Functionalities ...

□ Intelligent Asset Management- Reduced outages

- Thermal Image Sensing (Thermo-vision scanning)
- Hot-line maintenance
- On-line monitoring
- Predictive Maintenance

 Grid Connected Battery Energy Storage System for Frequency Regulation and Energy Time shift